Dirac Operators on Quantum Two Spheres

نویسندگان

  • Kazutoshi Ohta
  • Hisao Suzuki
چکیده

We investigate the spin 1/2 fermions on quantum two spheres. It is shown that the wave functions of fermions and a Dirac Operator on quantum two spheres can be constructed in a manifestly covariant way under the quantum group SU(2) q. The concept of total angular momentum and chirality can be expressed by using q-analog of Pauli-matrices and appropriate commutation relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Dirac Operators over Quantum Spheres

We construct new families of spectral triples over quantum spheres, with a particular attention focused on the standard Podleś quantum sphere and twisted Dirac operators.

متن کامل

Equivariant spectral triples for SUq(l + 1) and the odd dimensional quantum spheres

We formulate the notion of equivariance of an operator with respect to a covariant representation of a C∗-dynamical system. We then use a combinatorial technique used by the authors earlier in characterizing spectral triples for SUq(2) to investigate equivariant spectral triples for two classes of spaces: the quantum groups SUq(l+1) for l > 1, and the odd dimensional quantum spheres S q of Vaks...

متن کامل

Chiral Fermions on Quantum Four-spheres

We construct wave functions and Dirac operator of spin 1/2 fermions on quantum four-spheres. The construction can be achieved by the q-deformed differential calculus which is manifestly SO(5)q covariant. We evaluate the engenvalue of the Dirac operator on wave functions of the spinors and show that we can define the chiral fermions in such a way that the massless Dirac operator anti-commutes wi...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

Dirac monopoles from the Matsumoto non-commutative spheres

It is shown that the non-commutative three-sphere introduced by Matsumoto is a total space of the quantum Hopf bundle over the classical two-sphere. A canonical connection is constructed, and is shown to coincide with the standard Dirac magnetic monopole.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994